A Möbius Inversion Formula for Generalized Lefschetz Numbers

نویسنده

  • DAVIDE L. FERRARIO
چکیده

Let G be a finite group and f : U ⊂ M → M a compactly fixed G-equivariant self-map of a G-manifold M ; the aim of the paper is to give an answer to the following question: if for every subgroup H ⊂ G the restricted map f : U →M can be deformed (non-equivariantly and via a compactly fixed homotopy) to be fixed point free, is it true that f can be deformed (via a compactly fixed homotopy) equivariantly to a fixed point free map? To achieve the result, it is necessary to relate the generalized Lefschetz numbers L(f) to the obstructions of deforming f equivariantly, which are nothing but some (local) generalized Lefschetz numbers of suitable maps. Under some assumptions there is an algebraic relation, namely a Möbius inversion formula, that allows to have the full answer. This formula is a generalization of a formula of Dold [Do83] and Komiya [Ko88], with the generalized Lefschetz number in place of the Brouwer fixed point index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Möbius Inversion - Theoretical and Computational Aspects

We consider the problem for finding a wide class of Möbius-type inversion formulae via Dirichlet series representations. We provide theoretical and computational aspects of this problem. Several examples are given to illustrate the constructive method.

متن کامل

Enumerative Combinatorics 9: Möbius inversion

In this section we will discuss the Inclusion-Exclusion principle, with a few applications (including a formula for the chromatic polynomial of a graph), and then consider a wide generalisation of it due to Gian-Carlo Rota, involving the Möbius function of a partially ordered set. The q-binomial theorem gives a simple formula for the Möbius function of the lattice of subspaces of a vector space.

متن کامل

Transversality and Lefschetz Numbers for Foliation Maps

Let F be a smooth foliation on a closed Riemannian manifold M , and let Λ be a transverse invariant measure of F . Suppose that Λ is absolutely continuous with respect to the Lebesgue measure on smooth transversals. Then a topological definition of the Λ-Lefschetz number of any leaf preserving diffeomorphism (M,F) → (M,F) is given. For this purpose, standard results about smooth approximation a...

متن کامل

9 S ep 2 00 5 LEFSCHETZ DECOMPOSITION AND THE CD - INDEX OF FANS

The goal of this article is to give a Lefschetz type decomposition for the cd-index of a complete fan. To a complete simplicial fan one can associate a toric variety X, the even Betti numbers hi of X and the numbers gi = hi − hi−1. If the fan is projective, then non-negativity of gi follows from the Lefschetz decomposition of the cohomology. In the case of a nonsiplicial complete fan one can an...

متن کامل

A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties

We give a new proof of the Jantzen sum formula for integral representations of Chevalley schemes over Spec Z. This is done by applying the fixed point formula of Lefschetz type in Arakelov geometry to generalized flag varieties. Our proof involves the computation of the equivariant Ray-Singer torsion for all equivariant bundles over complex homogeneous spaces. Furthermore, we find several expli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001